Ligand-directed profiling of organelles with internalizing phage libraries.

نویسندگان

  • Andrey S Dobroff
  • Roberto Rangel
  • Liliana Guzman-Roja
  • Carolina C Salmeron
  • Juri G Gelovani
  • Richard L Sidman
  • Cristian G Bologa
  • Tudor I Oprea
  • C Jeffrey Brinker
  • Renata Pasqualini
  • Wadih Arap
چکیده

Phage display is a resourceful tool to, in an unbiased manner, discover and characterize functional protein-protein interactions, create vaccines, and engineer peptides, antibodies, and other proteins as targeted diagnostic and/or therapeutic agents. Recently, our group has developed a new class of internalizing phage (iPhage) for ligand-directed targeting of organelles and to identify molecular pathways within live cells. This unique technology is suitable for applications ranging from fundamental cell biology to drug development. This unit describes the methods for generating and screening the iPhage display system, and explains how to select and validate candidate internalizing homing peptide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells

Phage display screening allows the study of functional protein-protein interactions at the cell surface, but investigating intracellular organelles remains a challenge. Here we introduce internalizing-phage libraries to identify clones that enter mammalian cells through a receptor-independent mechanism and target-specific organelles as a tool to select ligand peptides and identify their intrace...

متن کامل

Construction of Human Recombinant ScFv Phage Libraries from the Advanced Stages of Breast Carcinoma Patients

Advances in the field of antibody engineering, and the emergence of powerful screening technology such as filamentous phage display allowed to generate fully human antibodies with high affinities against virtually any desired target from immune or even naIve human repertoires. As a result, the immunogenicity problems related to applications of nonhuman based recombinant antibodies as therapeuti...

متن کامل

Ligand-directed surface profiling of human cancer cells with combinatorial peptide libraries.

A collection of 60 cell lines derived from human tumors (NCI-60) has been widely explored as a tool for anticancer drug discovery. Here, we profiled the cell surface of the NCI-60 by high-throughput screening of a phage-displayed random peptide library and classified the cell lines according to the binding selectivity of 26,031 recovered tripeptide motifs. By analyzing selected cell-homing pept...

متن کامل

Combinatorial ligand-directed lung targeting.

Phage display of random peptide libraries is a powerful, unbiased method frequently used to discover ligands for virtually any protein of interest and to reveal functional protein-protein interaction partners. Moreover, in vivo phage display permits selection of peptides that bind specifically to different vascular beds without any previous knowledge pertaining to the nature of their correspond...

متن کامل

High-content Analysis of Antibody Phage-display Library Selection Outputs Identifies Tumor Selective Macropinocytosis-dependent Rapidly Internalizing Antibodies*

Many forms of antibody-based targeted therapeutics, including antibody drug conjugates, utilize the internalizing function of the targeting antibody to gain intracellular entry into tumor cells. Ideal antibodies for developing such therapeutics should be capable of both tumor-selective binding and efficient endocytosis. The macropinocytosis pathway is capable of both rapid and bulk endocytosis,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current protocols in protein science

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2015